Possible roles of sphingolipids in clathrin-mediated endocytosis - Vesicle formation by a glycerophospholipid cycle - a hypothesis

Sybille G. E. Meyer


The participation of sphingolipids in non-clathrin-dependent endocytosis has been known for some time. The participation of sphingolipids in clathrin-mediated endocytosis (uptake of transferrin) has only recently been reported. It was shown that not only does the synthesis of sphingolipids play a significant role in clathrin-mediated endocytosis but also the degradation of sphingolipids. Thus, a cycling process seems likely and may suggest a role of lipids in creating vesicles whereas the current discussion gives curvature-inducing and -sensing proteins the leading role in this process.

We present a hypothetical cycle in which serine of phosphatidylserine and 2n-fatty acids of various glycerophospholipids are substrates for sphingolipid synthesis (sphingomyelin). Subsequently, sphingomyelin is broken down via acid sphingomyelinase, ceramidase, sphingosine-1-kinase and sphingosine-1-phosphate lyase. Phosphoethanolamine originating from the last reaction can be used for phosphatidylethanolamine synthesis. Phosphatidylserine synthase changes the head group of phosphatidylethanolamine to yield phosphatidylserine. Thus the original glycerophospholipids are restored.

It is likely that the particular metabolites not only have a physical role but also a role as signal molecules activating step by step the subsequent reaction in the developing vesicle and deactivating the previous one. That means that it is very difficult to measure the only temporarily activated enzymes. In order to prove this hypothesis it is initially important to search for the particular enzyme protein in the coated pit or vesicle independent of its activity. As the clathrin-mediated endocytosis is a fundamental process of all cells and is also involved in various diseases we should understand it not only for theoretical but also for medical reasons


glycerophospholipid cycle, curvature, clathrin-mediated endocytosis, sphingolipids.


Cheng, Z. J., Singh, R. D., Sharma, D. K., Holicky, E. L., Hanada, K., Marks, D. L., Pagano, R. E. Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Molecular Biology of the Cell (2006), 17(7),3197-3210.

Meyer, S. G. E., Wendt, A. E., Scherer, M., Liebisch, G., Kerkweg, U., Schmitz, G., de Groot, H. Myriocin, an inhibitor of serine palmitoyl transferase, impairs the uptake of transferrin and low-density lipoprotein in mammalian cells. Archives of Biochemistry and Biophysics (2012), 526(1),60-68. Additional information available from:


Approved by the authors 2012.

Shakor, A. B., Taniguchi, M., Kitatani, K., Hashimoto, M., Asano, S., Hayashi, A., Nomura, K., Bielawski, J., Bielawska, A., Watanabe, K., et al. Sphingomyelin Synthase 1-generated Sphingomyelin Plays an Important Role in Transferrin Trafficking and Cell Proliferation. The Journal of Biological Chemistry (2011), 286(L41),36053-36062.

Kim, R. H., Takabe, K., Milstien, S., Spiegel, S. Export and functions of sphingosine-1-phosphate. Biochimica et biophysica acta (2009), 1791(7),692-696.

Bartke, N., Hannun, Y. A. Bioactive sphingolipids: metabolism and function. Journal of Lipid Research (2009), 50 Suppl,S91-96.

Zhang, Y., Li, X., Becker, K. A., Gulbins, E. Ceramide-enriched membrane domains–structure and function. Biochimica et biophysica acta (2009), 1788(1),178-183.

Hannun, Y. A., Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nature Reviews Molecular Cell Biology (2008), 9(2),139-150.

Merrill, A. H., Jr. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. The Journal of Biological Chemistry (2002), 277(29),25843-25846.

Hait, N. C., Oskeritzian, C. A., Paugh, S. W., Milstien, S., Spiegel, S. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochimica et biophysica acta (2006), 1758(12),2016-2026.

Gulbins, E., Grassmé, H. Ceramide and cell death receptor clustering. Biochimica et biophysica acta (2002), 1585(2-3),139-145.

Gulbins, E., Li, P. L. Physiological and pathophysiological aspects of ceramide. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology (2006), 290(1),R11-26.

Grassmé, H., Riethmuller, J., Gulbins, E. Biological aspects of ceramide-enriched membrane domains. Progress in Lipid Research (2007), 46(3-4),161-170.

McMahon, H. T., Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature (2005), 438(7068),590-596.

McMahon, H. T., Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology (2011), 12(8),517-533.

van Blitterswijk, W. J., van der Luit, A. H., Veldman, R. J., Verheij, M., Borst, J. Ceramide: second messenger or modulator of membrane structure and dynamics? Biochemical Journal (2003), 369(Pt 2),199-211.

Jülicher, F., Lipowsky, R. Shape transformations of vesicles with intramembrane domains. Physical Review E—statistical, nonlinear, and soft matter physics (1996), 53(3),2670-2683.

Boucrot, E., Saffarian, S., Zhang, R., Kirchhausen, T. Roles of AP-2 in clathrin-mediated endocytosis. PLoS One (2010), 5(5),e10597.

Kirchhausen, T. Bending membranes. Nature Cell Biology (2012), 14(9),906-908.

Farge, E., Ojcius, D. M., Subtil, A., Dautry-Varsat, A. Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. American Journal of Physiology—Cell Physiology (1999), 276(3 Pt 1),C725-733.

Allan, D., Thomas, P., Michell, R. H. Rapid transbilayer diffusion of 1,2-diacylglycerol and its relevance to control of membrane curvature. Nature (1978), 276(5685),289-290.

Brown, W. J., Chambers, K., Doody, A. Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic (2003), 4(4),214-221.

Schmidt, A., Wolde, M., Thiele, C., Fest, W., Kratzin, H., Podtelejnikov, A. V., Witke, W., Huttner, W. B., Soling, H. D. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature (1999), 401(6749),133-141.

Weigert, R., Silletta, M. G., Spano, S., Turacchio, G., Cericola, C., Colanzi, A., Senatore, S., Mancini, R., Polishchuk, E. V., Salmona, M., et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature (1999), 402(6760),429-433.

Gallop, J. L., Butler, P. J., McMahon, H. T. Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature (2005), 438(7068),675-678.

Meyer, S. G. E., Karow, W., de Groot, H. 2n-fatty acids from phosphatidylcholine label sphingolipids - a novel role of phospholipase A2? Biochimica et biophysica acta (2005), 1735(1),68-78.

Meyer, S. G. E., de Groot, H. [14C]serine from phosphatidylserine labels ceramide and sphingomyelin in L929 cells. Evidence for a new metabolic relationship between glycerophospholipids and sphingolipids. Archives of Biochemistry and Biohysics (2003), 410(1),107-111.

Tang, X., Waksman, M., Ely, Y., Liscovitch, M. Characterization and regulation of yeast Ca2+-dependent phosphatidylethanolamine-phospholipase D activity. European Journal of Biochemistry (2002), 269(15),3821-3830.

Han, G., Gupta, S. D., Gable, K., Niranjanakumari, S., Moitra, P., Eichler, F., Brown, R. H., Jr., Harmon, J. M., Dunn, T. M. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proceedings of the National Academy of Sciences of the United States of America (2009), 106(20),8186-8191.

Russo, S. B., Tidhar, R., Futerman, A. H., Cowart, L. A. Myristate-Derived d16:0-Sphingolipids Constitute a Cardiac Sphingolipid Pool with Distinct Synthetic Routes and Functional Properties. The Journal of Biological Chemistry (2013), 288(19)13397-13409.

Wei, J., Yerokun, T., Leipelt, M., Haynes, C. A., Radhakrishna, H., Momin, A., Kelly, S., Park, H., Wang, E., Carton, J. M., et al. Serine palmitoyltransferase subunit 1 is present in the endoplasmic reticulum, nucleus and focal adhesions, and functions in cell morphology. Biochimica et biophysica acta (2009), 1791(8),746-756.

Zha, X., Pierini, L. M., Leopold, P. L., Skiba, P. J., Tabas, I., Maxfield, F. R. Sphingomyelinase treatment induces ATP-independent endocytosis. The Journal of Cell Biology (1998), 140(1),39-47.

mKornhuber, J., Tripal, P., Reichel, M., Muhle, C., Rhein, C., Muehlbacher, M., Groemer, T. W., Gulbins, E. Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cellular Physiology and Biochemistry (2010), 26(1),9-20.

Duran, J. M., Campelo, F., van Galen, J., Sachsenheimer, T., Sot, J., Egorov, M. V., Rentero, C., Enrich, C., Polishchuk, R. S., Goni, F. M., et al. Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex. The EMBO Journal (2012), 31(24),4535-4546.

Huitema, K., van den Dikkenberg, J., Brouwers, J. F., Holthuis, J. C. Identification of a family of animal sphingomyelin synthases. The EMBO Journal (2004), 23(1),33-44.

Linardic, C. M., Hannun, Y. A. Identification of a distinct pool of sphingomyelin involved in the sphingomyelin cycle. The Journal of Biological Chemistry (1994), 269(38),23530-23537.

Andrieu-Abadie, N., Carpentier, S., Salvayre, R., Levade, T. The tumour necrosis factor-sensitive pool of sphingomyelin is resynthesized in a distinct compartment of the plasma membrane. Biochemical Journal (1998), 333 ( Pt 1),91-97.

Tani, M., Hannun, Y. A. Analysis of membrane topology of neutral sphingomyelinase 2. FEBS Letters (2007), 581(7),1323-1328.

Aye, I. L., Singh, A. T., Keelan, J. A. Transport of lipids by ABC proteins: Interactions and implications for cellular toxicity, viability and function. Chemico-Biological Interactions (2009), 180(3),327-339.

Acharya, U., Mowen, M. B., Nagashima, K., Acharya, J. K. Ceramidase expression facilitates membrane turnover and endocytosis of rhodopsin in photoreceptors. Proceedings of the National Academy of Sciences of the United States of America (2004), 101(7),1922-1926.

Smith, E. R., Merrill, A. H., Jr. Differential roles of de novo sphingolipid biosynthesis and turnover in the "burst" of free sphingosine and sphinganine, and their 1-phosphates and N-acyl-derivatives, that occurs upon changing the medium of cells in culture. The Journal of Biological Chemistry (1995), 270(32),18749-18758.

Friant, S., Lombardi, R., Schmelzle, T., Hall, M. N., Riezman, H. Sphingoid base signaling via Pkh kinases is required for endocytosis in yeast. The EMBO Journal (2001), 20(23),6783-6792.

Dickson, R. C., Sumanasekera, C., Lester, R. L. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Progress in Lipid Research (2006), 45(6),447-465.

Kiss, A. L., Botos, E., Turi, A., Mullner, N. Ocadaic acid treatment causes tyrosine phosphorylation of caveolin-2 and induces internalization of caveolae in rat peritoneal macrophages. Micron (2004), 35(8),707-715.

Tada, Y., Yoshizawa, S., Nagasawa, K., Furugo, I., Tsuru, T., Mayumi, T., Tsukamoto, H., Niho, Y. Okadaic acid enhances human T cell activation and phosphorylation of an internal substrate induced by phorbol myristate acetate. Immunopharmacology (1992), 24(1),17-24.

Blouin, C. M., Prado, C., Takane, K. K., Lasnier, F., Garcia-Ocana, A., Ferre, P., Dugail, I., Hajduch, E. Plasma membrane subdomain compartmentalization contributes to distinct mechanisms of ceramide action on insulin signaling. Diabetes (2010), 59(3),600-610.

Spiegel, S., Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nature Reviews Immunology (2011), 11(6),403-415.

Burke, J. E., Dennis, E. A. Phospholipase A2 structure/function, mechanism, and signaling. Journal of Lipid Research (2009), 50 Suppl,S237-242.

Kitatani, K., Idkowiak-Baldys, J., Hannun, Y. A. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal (2008), 20(6),1010-1018.

Merrill, A. H., Jr., Stokes, T. H., Momin, A., Park, H., Portz, B. J., Kelly, S., Wang, E., Sullards, M. C., Wang, M. D. Sphingolipidomics: a valuable tool for understanding the roles of sphingolipids in biology and disease. Journal of Lipid Research (2009), 50 Suppl,S97-102.

Vance, J. E. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. Journal of Lipid Research (2008), 49(7),1377-1387.


  • There are currently no refbacks.