The cardiovascular effects of proteolysis of high molecular weight basic fibroblast growth factor by inflammatory serine proteases

Giuseppe Pintucci


Cardiovascular disease is characterized by structural and functional changes of blood vessel’s wall that lead to reduced blood flow and eventually occlusion. The integrity of the vascular wall is maintained by homeostatic mechanisms controlled by the endothelium. Stress caused by age, oxidants, mechanical injury, and inflammation can result in endothelial dysfunction leading to remodeling of the vessel wall. We found that thrombin, a key protease of the coagulation cascade and inflammatory response, cleaves the high molecular weight (HMW) forms of basic fibroblast growth factor (FGF-2), a ubiquitous protein with trophic effects on vascular cells. The C-terminal fragment of FGF-2 generated by thrombin is similar to low molecular weight (LMW; 18 kDa) FGF-2, and induces vascular cell activation of the mitogen-activated protein kinases ERK-1/2, migration and proliferation. The N-terminal fragment generated by thrombin cleavage of HMW FGF-2 contains a sequence rich in asymmetric-dimethyl-arginine (ADMA) residues. In free form ADMA inhibits key reactions for blood vessel homeostasis such as nitric oxide synthesis, and its serum levels, elevated in diabetes, renal failure, hypertension, and hypercholesterolemia, correlate with a poor prognosis in cardiovascular patients. We found that thrombin cleavage of HMW FGF-2 dramatically upregulates intracellular ADMA levels in cultured cells. Thus, the C-terminal cleavage product of HMW FGF-2 can activate intracellular signaling and control vascular cell functions, while the N-terminal fragment of FGF-2 generates ADMA, a powerful inhibitor of nitric oxide synthesis. We hypothesize that upon vascular injury HMW FGF-2 is processed by inflammatory serine proteases such as thrombin generating molecules that accelerate the development of intimal hyperplasia. This novel mechanism implicates human HMW FGF-2 in the pathogenetic mechanisms of vascular injury occurring in hypertension, diabetes, and dyslipidemia, conditions that are all characterized by elevated serum levels of ADMA. The elucidation of these mechanisms will foster the development of new pharmacological tools for the treatment of the cardiovascular disorders associated with these diseases.


adma; endothelium; endothelial cells; intimal hyperplasia; neointima; post-translational modifications; vascular injury; vascular remodeling


J.A. Abraham, A. Mergia, J.L. Whang, A. Tumolo, J. Friedman, K.A. Hjerrild, D. Gospodarowicz, J.C. Fiddes, Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. (1986) 233 Science 545.

E. Arnaud, C. Touriol, C. Boutonnet, M.C. Gensac, S. Vagner, H. Prats, A.C. Prats, A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. (1999) 19 Mol Cell Biol 505.

A. Bikfalvi, S. Klein, G. Pintucci, D.B. Rifkin, Biological roles of fibroblast growth factor-2. (1997) 18 Endocr Rev 26.

I. Delrieu, The high molecular weight isoforms of basic fibroblast growth factor (FGF-2): an insight into an intracrine mechanism. (2000) 468 FEBS Lett 6.

P.J. Yu, G. Ferrari, A.C. Galloway, P. Mignatti, G. Pintucci, Basic fibroblast growth factor (FGF-2): The high molecular weight forms come of age. (2007) 100 J Cell Biochem 1100.

R.Z. Florkiewicz, A. Sommer, Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons [published erratum appears in Proc Natl Acad Sci U S A 1990 Mar;87(5):2045]. (1989) 86 Proc Natl Acad Sci U S A 3978.

D. Moscatelli, J. Joseph-Silverstein, R. Manejias, D.B. Rifkin, Mr 25,000 heparin-binding protein from guinea pig brain is a high molecular weight form of basic fibroblast growth factor. (1987) 84 Proc Natl Acad Sci U S A 5778.

M. Renko, N. Quarto, T. Morimoto, D.B. Rifkin, Nuclear and cytoplasmic localization of different basic fibroblast growth factor species. (1990) 144 J Cell Physiol 108.

P. Mignatti, T. Morimoto, D.B. Rifkin, Basic fibroblast growth factor released by single, isolated cells stimulates their migration in an autocrine manner. (1991) 88 Proc Natl Acad Sci U S A 11007.

A. Bikfalvi, S. Klein, G. Pintucci, N. Quarto, P. Mignatti, D.B. Rifkin, Differential modulation of cell phenotype by different molecular weight forms of basic fibroblast growth factor: possible intracellular signaling by the high molecular weight forms. (1995) 129 J Cell Biol 233.

N. Quarto, D. Talarico, R. Florkiewicz, D.B. Rifkin, Selective expression of high molecular weight basic fibroblast growth factor confers a unique phenotype to NIH 3T3 cells. (1991) 2 Cell Regul 699.

N. Quarto, K.D. Fong, M.T. Longaker, Gene profiling of cells expressing different FGF-2 forms. (2005) 356 Gene 49.

R.S. Piotrowicz, P.A. Maher, E.G. Levin, Dual activities of 22-24 kDA basic fibroblast growth factor: inhibition of migration and stimulation of proliferation. (1999) 178 J Cell Physiol 144.

R.S. Piotrowicz, L. Ding, P. Maher, E.G. Levin, Inhibition of cell migration by 24-kDa fibroblast growth factor-2 is dependent upon the estrogen receptor. (2001) 276 J Biol Chem 3963.

R.Z. Florkiewicz, R.A. Majack, R.D. Buechler, E. Florkiewicz, Quantitative export of FGF-2 occurs through an alternative, energy-dependent, non-ER/Golgi pathway. (1995) 162 J Cell Physiol 388.

R.S. Piotrowicz, J.L. Martin, W.H. Dillman, E.G. Levin, The 27-kDa heat shock protein facilitates basic fibroblast growth factor release from endothelial cells. (1997) 272 J Biol Chem 7042.

S. Taverna, G. Ghersi, A. Ginestra, S. Rigogliuso, S. Pecorella, G. Alaimo, F. Saladino, V. Dolo, P. Dell'Era, A. Pavan, G. Pizzolanti, P. Mignatti, M. Presta, M.L. Vittorelli, Shedding of membrane vesicles mediates fibroblast growth factor-2 release from cells. (2003) 278 J Biol Chem 51911.

G. Pintucci, P.J. Yu, F. Saponara, D.L. Kadian-Dodov, A.C. Galloway, P. Mignatti, PDGF-BB induces vascular smooth muscle cell expression of high molecular weight FGF-2, which accumulates in the nucleus. (2005) 95 J Cell Biochem 1292.

D.A. Jans, Nuclear signaling pathways for polypeptide ligands and their membrane receptors? (1994) 8 Faseb J 841.

M. Keresztes, J. Boonstra, Import(ance) of growth factors in(to) the nucleus. (1999) 145 J Cell Biol 421.

M.K. Stachowiak, X. Fang, J.M. Myers, S.M. Dunham, R. Berezney, P.A. Maher, E.K. Stachowiak, Integrative nuclear FGFR1 signaling (INFS) as a part of a universal "feed-forward-and-gate" signaling module that controls cell growth and differentiation. (2003) 90 J Cell Biochem 662.

S. Vagner, M.C. Gensac, A. Maret, F. Bayard, F. Amalric, H. Prats, A.C. Prats, Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. (1995) 15 Mol Cell Biol 35.

S. Vagner, C. Touriol, B. Galy, S. Audigier, M.C. Gensac, F. Amalric, F. Bayard, H. Prats, A.C. Prats, Translation of CUG- but not AUG-initiated forms of human fibroblast growth factor 2 is activated in transformed and stressed cells. (1996) 135 J Cell Biol 1391.

M.K. Stachowiak, J. Moffett, A. Joy, E. Puchacz, R. Florkiewicz, E.K. Stachowiak, Regulation of bFGF gene expression and subcellular distribution of bFGF protein in adrenal medullary cells. (1994) 127 J Cell Biol 203.

B. Garmy-Susini, E. Delmas, P. Gourdy, M. Zhou, C. Bossard, B. Bugler, F. Bayard, A. Krust, A.C. Prats, T. Doetschman, H. Prats, J.F. Arnal, Role of fibroblast growth factor-2 isoforms in the effect of estradiol on endothelial cell migration and proliferation. (2004) 94 Circ Res 1301.

S. Teshima-Kondo, K. Kondo, L. Prado-Lourenco, I.G. Gonzalez-Herrera, K. Rokutan, F. Bayard, J.F. Arnal, A.C. Prats, Hyperglycemia upregulates translation of the fibroblast growth factor 2 mRNA in mouse aorta via internal ribosome entry site. (2004) 18 Faseb J 1583.

W.H. Burgess, J. Bizik, T. Mehlman, N. Quarto, D.B. Rifkin, Direct evidence for methylation of arginine residues in high molecular weight forms of basic fibroblast growth factor. (1991) 2 Cell Regul 87.

G. Pintucci, N. Quarto, D.B. Rifkin, Methylation of high molecular weight fibroblast growth factor-2 determines post-translational increases in molecular weight and affects its intracellular distribution. (1996) 7 Mol Biol Cell 1249.

S. Klein, J.A. Carroll, Y. Chen, M.F. Henry, P.A. Henry, I.E. Ortonowski, G. Pintucci, R.C. Beavis, W.H. Burgess, D.B. Rifkin, Biochemical analysis of the arginine methylation of high molecular weight fibroblast growth factor-2. (2000) 275 J Biol Chem 3150.

D.M. Ornitz, N. Itoh, Fibroblast growth factors. (2001) 2 Genome Biol REVIEWS3005.

S.M. Schwartz, M.A. Reidy, E.R. O'Brien, Assessment of factors important in atherosclerotic occlusion and restenosis. (1995) 74 Thromb Haemost 541.

J. Waltenberger, Modulation of growth factor action: implications for the treatment of cardiovascular diseases. (1997) 96 Circulation 4083.

P.C. Saunders, G. Pintucci, C.S. Bizekis, R. Sharony, K.M. Hyman, F. Saponara, F.G. Baumann, E.A. Grossi, S.B. Colvin, P. Mignatti, A.C. Galloway, Vein graft arterialization causes differential activation of mitogen-activated protein kinases. (2004) 127 J Thorac Cardiovasc Surg 1276.

G. Pintucci, P.C. Saunders, I. Gulkarov, R. Sharony, D.L. Kadian-Dodov, K. Bohmann, F.G. Baumann, A.C. Galloway, P. Mignatti, Anti-proliferative and anti-inflammatory effects of topical MAPK inhibition in arterialized vein grafts. (2006) 20 Faseb J 398.

R. Sharony, G. Pintucci, P.C. Saunders, E.A. Grossi, F.G. Baumann, A.C. Galloway, P. Mignatti, Matrix metalloproteinase expression in vein grafts: role of inflammatory mediators and extracellular signal-regulated kinases-1 and -2. (2006) 290 Am J Physiol Heart Circ Physiol H1651.

R. Sharony, P.J. Yu, J. Park, A.C. Galloway, P. Mignatti, G. Pintucci, Protein targets of inflammatory serine proteases and cardiovascular disease. (2010) 7 J Inflamm (Lond) 45.

P.J. Yu, G. Ferrari, L. Pirelli, A.C. Galloway, P. Mignatti, G. Pintucci, Thrombin cleaves the high molecular weight forms of basic fibroblast growth factor (FGF-2): a novel mechanism for the control of FGF-2 and thrombin activity. (2008) 27 Oncogene 2594.

A. Foletti, F. Vuadens, F. Beermann, Nuclear localization of mouse fibroblast growth factor 2 requires N-terminal and C-terminal sequences. (2003) 60 Cell Mol Life Sci 2254.

R.H. Boger, The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. (2003) 59 Cardiovasc Res 824.

P. Vallance, A. Leone, A. Calver, J. Collier, S. Moncada, Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. (1992) 339 Lancet 572.

O. Suda, M. Tsutsui, T. Morishita, H. Tasaki, S. Ueno, S. Nakata, T. Tsujimoto, Y. Toyohira, Y. Hayashida, Y. Sasaguri, Y. Ueta, Y. Nakashima, N. Yanagihara, Asymmetric dimethylarginine produces vascular lesions in endothelial nitric oxide synthase-deficient mice: involvement of renin-angiotensin system and oxidative stress. (2004) 24 Arterioscler Thromb Vasc Biol 1682.

R.H. Boger, Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the "L-arginine paradox" and acts as a novel cardiovascular risk factor. (2004) 134 J Nutr 2842S; discussion 2853S.

M.F. McCarty, Vascular endothelium is the organ chiefly responsible for the catabolism of plasma asymmetric dimethylarginine--an explanation for the elevation of plasma ADMA in disorders characterized by endothelial dysfunction. (2004) 63 Med Hypotheses 699.

J. Leiper, M. Nandi, B. Torondel, J. Murray-Rust, M. Malaki, B. O'Hara, S. Rossiter, S. Anthony, M. Madhani, D. Selwood, C. Smith, B. Wojciak-Stothard, A. Rudiger, R. Stidwill, N.Q. McDonald, P. Vallance, Disruption of methylarginine metabolism impairs vascular homeostasis. (2007) 13 Nat Med 198.

A. Testa, B. Spoto, G. Tripepi, F. Mallamaci, L. Malatino, P. Fatuzzo, R. Maas, R. Boeger, C. Zoccali, The GLU298ASP variant of nitric oxide synthase interacts with asymmetric dimethyl arginine in determining cardiovascular mortality in patients with end-stage renal disease. (2005) 23 J Hypertens 1825.

G. Pintucci, D. Moscatelli, F. Saponara, P.R. Biernacki, F.G. Baumann, C. Bizekis, A.C. Galloway, C. Basilico, P. Mignatti, Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells. (2002) 16 Faseb J 598.

R.R. Lobb, Thrombin inactivates acidic fibroblast growth factor but not basic fibroblast growth factor. (1988) 27 Biochemistry 2572.

H. Kleinert, P.M. Schwarz, U. Forstermann, Regulation of the expression of inducible nitric oxide synthase. (2003) 384 Biol Chem 1343.

A. Kumar, V. Lindner, Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. (1997) 17 Arterioscler Thromb Vasc Biol 2238.

V. Lindner, D.A. Lappi, A. Baird, R.A. Majack, M.A. Reidy, Role of basic fibroblast growth factor in vascular lesion formation. (1991) 68 Circ Res 106.

V. Lindner, M.A. Reidy, Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. (1991) 88 Proc Natl Acad Sci U S A 3739.

M. Tanaka, K. Sydow, F. Gunawan, J. Jacobi, P.S. Tsao, R.C. Robbins, J.P. Cooke, Dimethylarginine dimethylaminohydrolase overexpression suppresses graft coronary artery disease. (2005) 112 Circulation 1549.

M. Izikki, C. Guignabert, E. Fadel, M. Humbert, L. Tu, P. Zadigue, P. Dartevelle, G. Simonneau, S. Adnot, B. Maitre, B. Raffestin, S. Eddahibi, Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents. (2009) 119 J Clin Invest 512.

J.T. Kielstein, S.M. Bode-Boger, G. Hesse, J. Martens-Lobenhoffer, A. Takacs, D. Fliser, M.M. Hoeper, Asymmetrical dimethylarginine in idiopathic pulmonary arterial hypertension. (2005) 25 Arterioscler Thromb Vasc Biol 1414.


  • There are currently no refbacks.