Chaetognaths feed primarily on dissolved and fine particulate organic matter, not on prey: implications for marine food webs

Jean-Paul Casanova, Roxanne Barthelemy, Michel Duvert, Eric Faure

Abstract


Chaetognaths are considered to be the dominant predators of small zooplankton and fish larvae. Therefore, it is thought that they play an influential role in marine pelagic food webs, transferring most of the zooplanktonic biomass to higher trophic levels. To date, their head armature (teeth and grasping hooks) and the results of laboratory feeding experiments have supported this view. However, analyses of gut contents and other aspects of their feeding behavior suggest that chaetognaths are primarily osmotrophic animals. They gulp seawater, taking in dissolved and thin particulate organic matter produced in abundance by viruses and bacteria. This diet explains the success of chaetognaths in number and biomass and the observed lack of relationship between chaetognaths and prey availability. The role of chaetognaths should be revisited in the global ocean ecological balance, particularly with respect to vertical carbon flux, and also in predicting fishery resources.

Keywords


chaetognaths; nutrition; osmotrophy; marine dissolved organic matter; planktonic food web shunt; marine viruses

References


Coston-Clements, L., Waggett, R. J., Tester, P. A. Chaetognaths of the United States South Atlantic Bight: Distribution, abundance and potential interactions with newly spawned larval fish. Journal of Experimental Marine Biology and Ecology, (2009), 373(2), 111-123.

Reeve, M. R. The biology of Chaetognatha I. Quantitative aspects of growth and egg production in Sagitta hispida. In Marine food chains (ed J. H. Steele), pp. 168-189. Edinburgh: Oliver and Boyd 1970.

Bonnet, D., Lindeque, P. K., Harris, R. P. Sagitta setosa predation on Calanus helgolandicus in the English Channel. Journal of Plankton Research, (2010), 32(5), 725-737.

Giesecke, R., González, H. E. Distribution and feeding of chaetognaths in the epipelagic zone of the Lazarev Sea (Antarctica) during austral summer. Polar Biology, 2012, 35(5), 689-703.

Parry, D. A. Structure and function of the gut in Spadella cephaloptera and Sagitta setosa. Journal of the Marine Biological Association of the United Kingdom, (1944), 26(1), 16-36.

Bone, Q., Brownlee, C., Bryan, G. W., Burt, G. R., Dando, P. R., Liddicoat, M. I., Pulsford, A. L., Ryan, K. P. On the differences between the two "indicator" species of chaetognaths, Sagitta setosa and S. elegans. Journal of the Marine Biological Association of the United Kingdom, (1987), 67(3), 545-560.

Casanova, J.-P. Spadella ledoyeri, chaetognathe nouveau de la grotte sous-marine obscure des Trémies (Calanques de Cassis). Rapport Commission International de la Mer Méditerranée, (1986), 30(2), 196.

Casanova, J.-P. Quatre nouveaux chaetognathes atlantiques abyssaux (genre Heterokrohnia): description, remarques éthologiques et biogéographiques. Oceanologica Acta, (1986), 9(4), 469-477.

Feigenbaum, D. L., Marris, R. C., Feeding in the Chaetognatha. Oceanography and Marine Biology: Annual Review, (1984), 22, 343-392.

Heydorn, A. E. F. The Chaetognatha off the west coast of the Union of South Africa. Investigational report, Division of Sea Fisheries, South Africa, (1959), 36(1), 1-56.

Ghirardelli, E., Morfologia dell'apparecchio digerente in Sagitta minima Grassi. Bollettino di Zoologia, Torino, (1950), 17(Suppl.), 555-567.

Froneman, P. W., Pakhomov, E. A., Perissinotto, R., Meaton, V. Feeding and predation impact of two chaetognath species, Eukrohnia hamata and Sagitta gazellae, in the vicinity of Marion Island (southern ocean). Marine Biology, (1998), 131(1), 95-101.

Øresland, V. Feeding of the chaetognaths Sagitta elegans and S. setosa at different seasons in Gullmarsfjorden, Sweden. Marine Ecology Progress Series, (1987), 39(1), 69-79.

Newbury, T. K., Consumption and growth rates of chaetognaths and copepods in subtropical oceanic waters. Pacific Science, (1978), 32(1), 61-78.

Falkenhaug, T. Prey composition and feeding rate of Sagitta elegans var. arctica (Chaetognatha) in the Barents Sea in early summer. Polar Research, (1991), 10(2), 487-506.

Baier, C. T., Purcell, J. E. Trophic interactions of chaetognaths, larval fish and zooplankton in the South Atlantic Bight. Marine Ecology Progress Series, (1997) 146(1-3), 43-53.

Reeve, M. R. Feeding of zooplankton, with special reference to some experiments with Sagitta. Nature, (1964), 201(4915), 211-213.

Dunbar, M. J. The life cycle of Sagitta elegans in Arctic and Subarctic seas, and the modifying effects of hydrographic differences in the environment. Journal of Marine Research, (1962), 20(1), 76-91.

Sameoto, D. D. Life history, ecological production, and an empirical mathematical model of the population of Sagitta elegans in St. Margaret's Bay, Nova Scotia. Journal of the Fisheries Research Board of Canada, (1971), 28(7), 971-985.

Perez, Y., Casanova, J.-P., Mazza, J. Changes in the structure and ultrastructure of the intestine of Spadella cephaloptera (Chaetognatha) during feeding and starvation experiments. Journal of Experimental Marine Biology and Ecology, (2000), 253(1), 1-15.

Barthélémy, R.-M., Casanova, J.-P., Grino, M., Faure, E. Selective expression of two types of 28S rRNA paralogous genes in the chaetognath Spadella cephaloptera. Cellular and Molecular Biology (Noisy-le-Grand), (2007), 53(S:OL), 989-893.

Vinogradov, M. E., Tseitlin, V. B. Deep-sea pelagic domain (aspects of bioenergetics). In Deep-sea Biology (ed G. T. Rowe), pp. 123-166. New York: Wiley 1983.

Strzelecki J., Koslow J. A., Waite A., Comparison of mesozooplankton communities from a pair of warm- and cold-core eddies off the coast of Western Australia. Deep-Sea Research II, (2007), 54(8-10), 1103-1112.

Thuesen, E. V., Childress, J. J. Enzymatic activities and metabolic rates of pelagic chaetognaths: lack of depth-related declines. Limnology and Oceanography, (1993), 38(5), 935-948.

Duvert, M., Gourdoux, L., Moreau, R. Cytochemical and physiological studies of the energetic metabolism and osmotrophy in Sagitta friderici (chaetognath). Journal of the Marine Biological Association of the United Kingdom, (2000), 80(5), 885-890.

Duvert, M., Perez, Y., Casanova, J.-P. Wound healing and survival of beheaded chaetognaths. Journal of the Marine Biological Association of the United Kingdom, (2000), 80(5), 891-898.

Sorokin, Y. I., Wyshkwarzev, D. I. Feeding on dissolved organic matter by some marine animals. Aquaculture, (1973), 2(2), 141-148.

Ferguson, J. C. Autoradiographic demonstration of the use of free amino acid by Sargasso Sea zooplankton. Journal of Plankton Research, (1988), 10(6), 1225-1238.

Doncaster, L. On the development of Sagitta; with notes on the anatomy of the adult. Quarterly Journal of Microscopical Science, (1902), 46(5), 351-398.

Arnaud, J., Brunet, M., Casanova, J.-P., Mazza, J., Pasqualini, V. Morphology and ultrastructure of the gut in Spadella cephaloptera (Chaetognatha). Journal of Morphology, (1996) 228(1), 27-44.

Perez, Y., Arnaud, J., Brunet, M., Casanova, J.-P., Mazza J. Morphological study of the gut in Sagitta setosa, S. serratodentata and S. pacifica (Chaetognatha). Functional implications in digestive processes. Journal of the Marine Biological Association of the United Kingdom, (1999), 79(6), 1097-1109.

Perez, Y., Casanova, J.-P., Mazza, J. Degrees of vacuolation of the absorptive intestinal cells of five Sagitta (Chaetognatha) species: possible ecophysiological implications. Marine Biology, (2001), 138(1), 125-133.

Dallot, S. La reproduction du chaetognathe planctonique Sagitta setosa Müller, en été, dans la rade de Villefranche. Comptes Rendus hebdomadaires de l'Académie des Sciences, Paris, (1967), 264, 972-974.

Dallot, S. Observations préliminaires sur la reproduction en élevage du chaetognathe planctonique Sagitta setosa Müller. Rapport Commission International Mer Méditerranée, (1968), 19(3), 521-523.

Burd, B., Thomson, R., Calvert, S. Isotopic composition of hydrothermal epiplume zooplankton: evidence of enhanced carbon recycling in the water column. Deep-Sea Research I, (2002), 49(10), 1877-1900.

Hirch, S. Trophic interactions at seamounts. PhD thesis, University of Hamburg, Germany, 2009, 211 p. http://ediss.sub.uni-hamburg.de/volltexte/2009/4414/pdf/DissertationHirch.pdf#page=203

Ohman M. D., Rau G. H., Hull P. M. Multi-decadal variations in stable N isotopes of California. Current zooplankton. Deep-Sea Research I, (2012), 60(1), 46-55.

Philp, K. Ningaloo Reef as a Plankton Filter: Changes in the Size Spectrum and Community Structure of Zooplankton across a Fringing Reef. PhD Thesis, University of Western Australia, 2007, 77 p. http://www.oii.uwa.edu.au/__data/assets/pdf_file/0012/1637499/Philp_2007.pdf

Kürten, B., Painting, S. J., Struck, U., Polunin, N. V. C., Middelburg, J. J. Tracking seasonal changes in North Sea zooplankton trophic dynamics using stable isotopes. Biogeochemistry, (2012), in press.

Casanova, J.-P. Chaetognaths from Alvin dives in the Santa Catalina Basin (California), with description of two new Heterokrohnia species. Journal of Natural History, (1992), 26(3), 663-674.

Casanova, J.-P. Three new rare Heterokrohnia species (Chaetognatha) from deep benthic samples in the North East Atlantic. Proceedings of the Biological Society of Washington, (1994), 10(4), 743-750.

Wishner, K. F., Gowing, M. M. In situ filtering and ingestion rates of deep-sea benthic boundary-layer zooplankton in the Santa Catalina Basin. Marine Biology, (1987), 94(3), 357-366.

Ritzau, W., Thomsen, L., Lara, R. J., Graf, G. Enhanced microbial utilisation of dissolved amino acids indicates rapid modification of organic matter in the benthic boundary layer. Marine Ecology Progress Series, (1997), 156(1), 43-50.

Steward, G. F., Smith, D. C., Azam, F. Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Marine Ecology Progress Series, (1996), 131(2), 287-300.

Kotori, M. K., Nishiyama, T., Tanimura, A., Watanabe, K. Abundance and vertical distribution of the chaetognath Parasagitta elegans (Verril) under the sea ice in Saroma Ko, a lagoon on Hokkaido, Japan. Proceedings of the NIPR Symposium on Polar Biology, (1987), 1, 138-144.

Maranger, R., Bird, D. F., Juniper, S. K. Viral and bacterial dynamics in Arctic sea ice during the spring algal bloom, near Resolute, NWT, Canada. Marine Ecology Progress Series, (1994), 111, 121-127.

Søreide, J. E., Hop, H., Carroll, M. L., Falk-Petersen, S., Hegseth, E. N. Seasonal food web structures and sympagic-pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. Progress in Oceanography, (2006), 71(1), 59-87.

Suttle, C. A., Chan, A. M., Cottrell, M. T. Infection of phytoplankton by viruses and reduction of primary productivity. Nature, (1990), 387(6292), 467-469.

Suttle, C. A. Marine viruses-major players in the global ecosystem. Nature Microbiology, (2007), 5(10), 801-812.

Danovaro, R., Dell'Anno, A., Corinaldesi, C., Magagnini, M., Noble, R., Tamburini C., Weinbauer, M. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature, (2008), 454(7208), 1084-1087.

Shibata, A., Kogure, K., Koike, I., Ohwada, K. Formation of submicron colloidal particles from marine bacteria by viral infection. Marine Ecology Progress Series, (1997), 155, 303-307.

Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature, (1999), 399(6736), 541-548.

Suthers, I., Dawson, M., Pitt, K., Miskiewicz, A. G. Coastal and marine zooplankton: diversity and biology. In Plankton, a guide to their ecology and monitoring for water quality (eds I. M. Suthers, D. Rissik), pp. 181-222. Melbourne: CSIRO Publications 2009.


Refbacks

  • There are currently no refbacks.